

Abductive Learning for Neuro-Symbolic Grounded Imitation

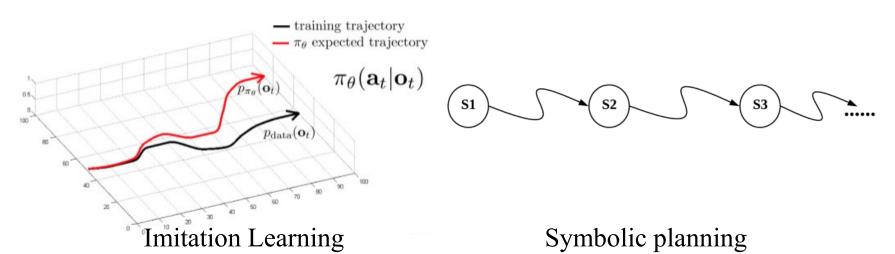
Jie – Jing Shao^{1*}, **Hao** – **Ran Hao**^{1,2*}, Xiao – Wen Yang^{1,2}, De – Chuan Zhan^{1,2}

National Key Laboratory for Novel Software Technology, Nanjing University, China

School of Artificial Intelligence, Nanjing University, China

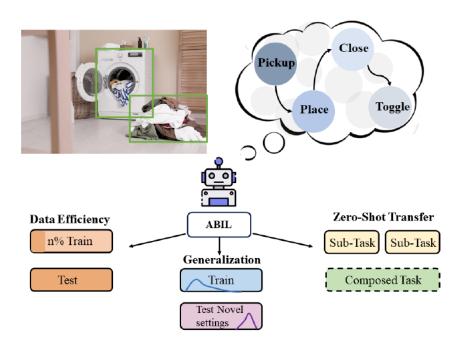
What is this work about

- ➤ Long-Horizon Decision-Making is critical for embodied intelligence.
 - > Imitation Learning
 - ✓ Shows promising performance on robotics and auto-driving.
 - Is limited in open environments, especially in the long-horizon tasks.
 - > Traditional symbolic planning
 - ✓ Excels at long-horizon tasks via logical reasoning.
 - Typically abstracts away perception with ground-truth symbols, struggles to map visual observations to human-defined symbolic spaces.



Such limitations restrict their application in Open environments.

What is this work about



- ✓ In this work, we propose a novel framework Abductive Imitation Learning (ABIL) to combine the benefits of data-driven learning and symbolic-based reasoning.
- ✓ Our **ABIL** shows significantly improved performance on settings of dataefficiency and generalization in the open environments.

Outline

1. Background

2. ABIL Framework

3. Empirical Results

4. Conclusion

Long-Horizon Planning

Background

- ☐ Previous Studies:
- ➤ Imitation learning: is weak at long-horizon tasks
- > Symbolic Planning: requires symbolic-level grounding
- ➤ Recent efforts on neuro-symbolic solutions[1,2,3]:

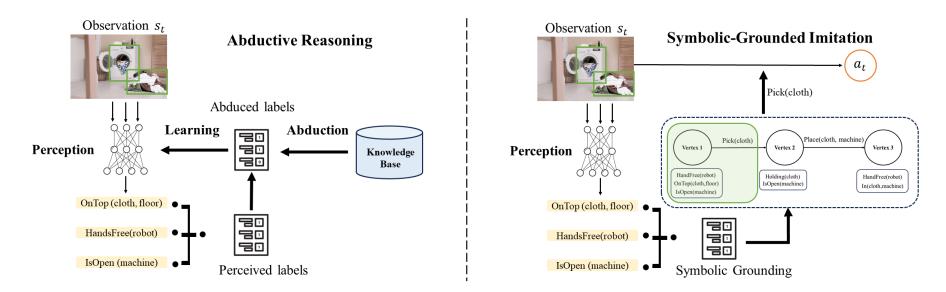
 These methods typically assume there are sufficient symbolic information, or only applicable to low-dimensional robotics states.

Our Goal

- ➤ Help the agent understand demonstrations in symbolic space from high-dimensional visual observations without symbolic-level label.
- ➤ Enable long-term logical planning for imitation learning.
 - [1] Regression Planning Networks. NeurIPS'19
 - [2] Learning Symbolic Operators for Task and Motion Planning. IROS'21
 - [3] Programmatically grounded, compositionally generalizable robotic manipulation. ICLR'23

Main Idea of ABIL

The Overall Framework



Goal:

- ➤ Help the agent understand demonstrations in symbolic space from high-dimensional visual observations without symbolic-level label.
- Enable long-term logical planning for imitation learning.

Outline

1. Background & Problem

2. ABIL Framework

3. Empirical Results

4. Conclusion

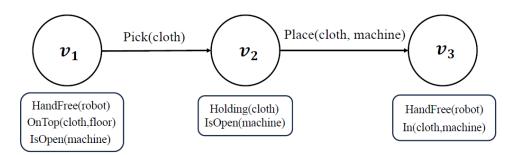
Problem Formulation

Goal-based planning task.

- Environment Definition: $\langle S, \mathcal{A}, \mathcal{T}, O, \mathcal{P}, O\mathcal{P}, S^0, g \rangle$ Deterministic, fully-observed environment with object-centric representation.
- > Symbolic Knowledge Base:

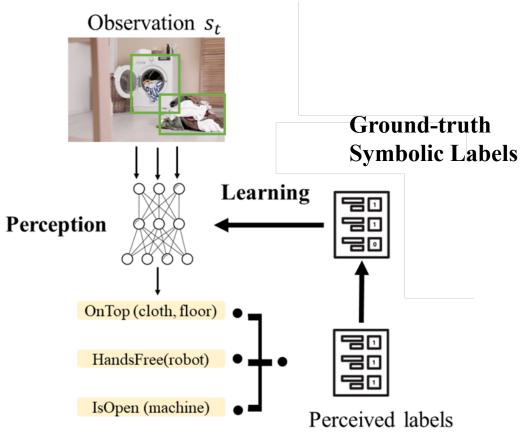
A finite-state machine, with a directed graph $G = \langle V, E \rangle$

- \blacksquare Each node $v \in V$ contains a set of ground atoms, which can be viewed as the condition of a sub-task.
- \square Each edge is noted as a tuple $\langle \overline{op}, EFF^+, EFF^- \rangle$.



An example of the knowledge base

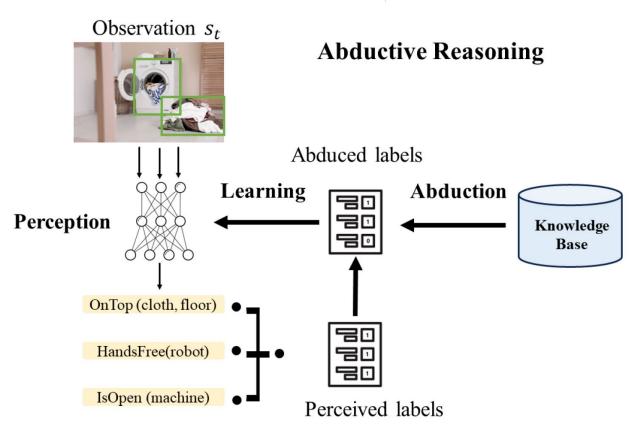
Symbolic-grounded Understanding



A straightforward method: optimize the network with the symbolic labels.

However: Symbolic supervision is typically costly or not available

Symbolic-grounded Understanding



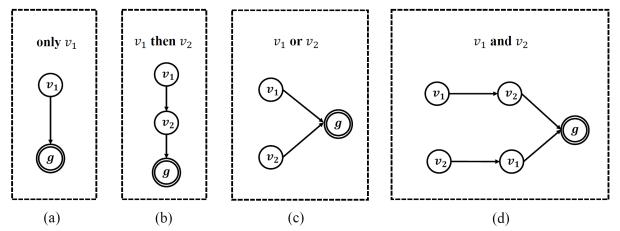
A straightforward method: optimize the network with the symbolic labels.

However: Symbolic supervision is typically costly or not available

We introduce the abductive reasoning to optimize the network.

Abductive Reasoning

Acquire the pseudo label from the knowledge of state machine via abductive reasoning.



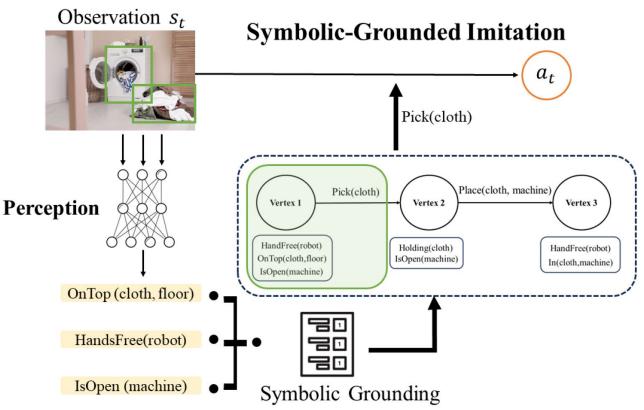
Typical structures of the state machine

- Derive the sequential abduction: $\{z_i^t\}_{t=1}^T \models G$
- Optimize the perception function f

$$\min_{f} \sum_{s_{i} \in D} \sum_{t=1}^{T} \mathcal{L}(f(s_{i}^{t}), \widehat{z_{i}^{t}}),$$

$$\{\widehat{z_{i}^{t}}\}_{t=1}^{T} = \arg\min_{\{z_{i}^{t}\}_{t=1}^{T}} \sum ||z_{i}^{t} - f(s_{i}^{t})||^{2}, \quad \text{s.t.} \{z_{i}^{t}\}_{t=1}^{T} \models G$$

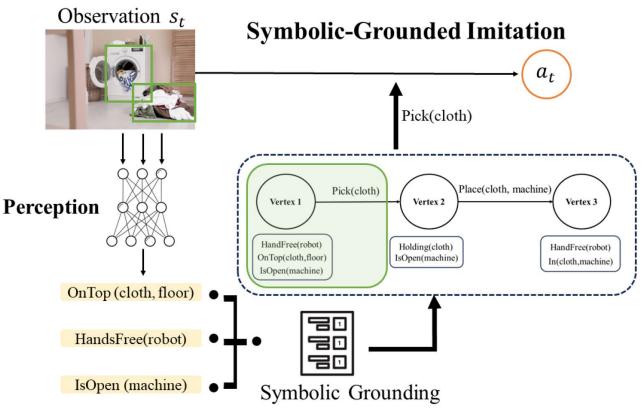
Symbolic-grounded Imitation



- Build the behavioral actor for each logical operator h_{op} , e.g. h_{pick} , h_{place}
- ullet Derive the symbolic states by perception f, and derive the corresponding abstract logical operator

$$\overline{op}^t = \overline{op}_k$$
, s.t. $f(s^t) \models v_k$, $\exists k \in [0, K)$

Symbolic-grounded Imitation



- Obtain the desired parameter of the operator \overline{op}^t by reasoning $o^t = obj(\overline{op}^t)$
- Then optimize the behavior actors

$$\min_{h} \sum_{s_i, a_i \in D} \sum_{t=1}^{T} \mathcal{L}(h_{\overline{op}_i^t}(s_i^t, o^t), a_i^t)$$

ABIL Algorithm

Algorithm 1 Abductive Imitation Learning

Require: Demonstration dataset D, symbolic knowledge G. Number of learning rounds N_R and N_I .

- 1: **for** t = 1 to N_R **do**
- 2: Get the perceived labels via f(s)
- 3: Get the abduced labels via Eq. 1.
- 4: Update the perception network f.
- 5: end for
- 6: **for** t = 1 to N_I **do**
- 7: Get the symbolic states via f(s)
- 8: Get the logical operator $o\bar{p}$ via Eq. 2.
- 9: Update the behavior network $h_{\bar{o}p}$ via Eq. 4.
- 10: end for
- 11: **return** Perception f and behavior $\{h_{\bar{op}}\}, \bar{op} \in \mathcal{OP}$.
- ➤ A two-stage learning algorithm.
- > Embed high-level logical reasoning into the imitation learning process.

Outline

- 1. Background & Problem
- 2. ABIL Framework

- 3. Empirical Results
- 4. Conclusion

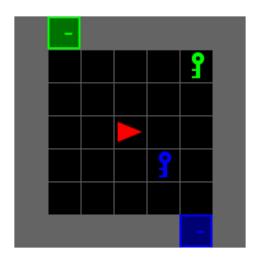
Setup

Three diverse environments

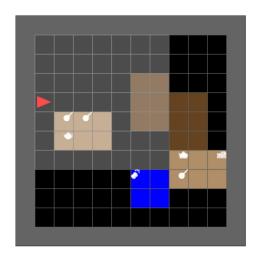
- ➤ BabyAI
 - ✓ Learning with logical instruction
- Mini-BEHAVIOR
 - ✓ Household Agent
- > CLIPort
 - ✓ Robotic manipulation

Baseline Methods

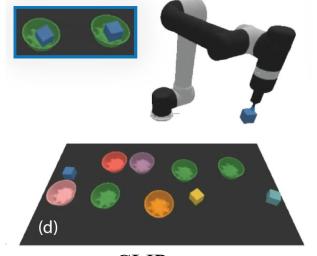
- Behavior Cloning (BC)
- Decision Transformer (DT)
- > PDSketch



BabyAI



Mini-BEHAVIOR



CLIPort

Evaluation on BabyAI

Task	Eval	ВС	DT	PDSketch	ABIL-BC	ABIL-DT
GotoSingle	Basic	1.00	0.893±0.049	1.00	1.00	0.900±0.036
Goto	Basic Gen	0.843±0.006 0.743±0.045	0.720±0.044 0.583±0.049	1.00 1.00	$\frac{0.900 \pm 0.046}{0.777 \pm 0.032}$	0.853±0.038 0.793±0.029
Pickup	Basic Gen	0.723±0.031 0.533±0.031	0.490±0.040 0.320±0.070	0.990±0.010 0.973±0.012	0.847±0.025 0.730±0.010	0.845±0.035 0.763±0.051
Open	Basic Gen	0.933±0.025 0.877±0.015	0.493±0.059 0.440±0.078	1.00 1.00	$\frac{0.963 \pm 0.021}{0.927 \pm 0.032}$	0.903±0.064 0.813±0.064
Put	Basic Gen	0.950±0.044 0.037±0.012	0.910±0.036 0.207±0.092	0.650±0.026 0.560±0.052	0.930±0.010 0.917±0.015	0.920±0.026 0.877±0.025
Unlock	Basic Gen	0.957±0.012 0.910±0.030	0.885±0.035 0.883±0.075	0.293±0.051 0.247±0.051	0.967±0.023 0.963±0.006	0.993±0.012 0.993±0.012
Averaged time per evaluation		0.174 seconds	0.260 seconds	8.17 seconds	0.320 seconds	0.354 seconds

ABIL effectively improves the performance of imitation learning methods.

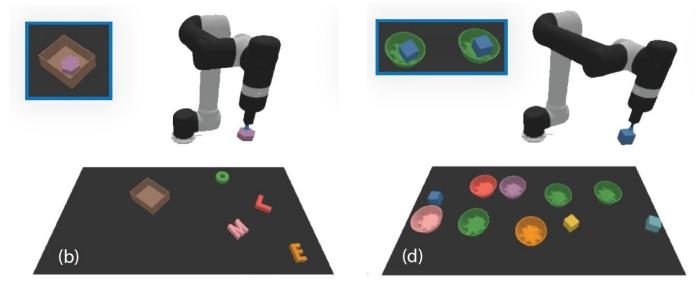
Results on Mini-BEHAVIOR

Task	Eval	BC	DT	PDSketch	ABIL-BC	ABIL-DT
Boxing books up			0.713 ± 0.035 0.519 ± 0.191	> 5 minutes	0.709 ± 0.077 0.644 ± 0.172	0.661 ± 0.094 0.625 ± 0.087
Cleaning A Car			0.313 ± 0.091 0.147 ± 0.083	> 5 minutes	$\substack{0.423 \pm 0.032 \\ 0.253 \pm 0.047}$	$0.330\pm0.050 \\ 0.170\pm0.078$
Cleaning shoes			0.427 ± 0.042 0.053 ± 0.046	> 5 minutes	$\substack{0.598 \pm 0.068 \\ 0.390 \pm 0.102}$	0.478 ± 0.020 0.290 ± 0.026
Collect misplaced items			0.299 ± 0.015 0.261 ± 0.023	> 5 minutes	$0.617 {\pm} 0.061 \ 0.423 {\pm} 0.051$	0.457 ± 0.007 0.387 ± 0.028
Installing a printer			0.927±0.021 0.300±0.147	0.343±0.032 0.310±0.046	0.887 ± 0.021 0.727 ± 0.047	$0.937 {\pm} 0.023 \ 0.757 {\pm} 0.107$
Laying wood floors			0.638 ± 0.027 0.366 ± 0.041	> 5 minutes	$0.644{\pm}0.043 \ 0.628{\pm}0.057$	0.643 ± 0.031 0.374 ± 0.040
Making tea			0.583 ± 0.105 0.113 ± 0.105	> 5 minutes	0.687±0.038 0.370±0.131	0.607 ± 0.029 0.493 ± 0.124
Moving boxes to storage			0.780 ± 0.017 0.617 ± 0.042	> 5 minutes	0.767 ± 0.012 0.730 ± 0.017	0.787±0.032 0.673±0.119
Opening packages			0.963 ± 0.034 0.548 ± 0.065	$0.020\pm0.010 \\ 0.020\pm0.010$	0.978±0.010 0.905±0.018	$0.990\pm0.009 \ 0.918\pm0.033$
Organizing file cabinet			0.522 ± 0.067 0.382 ± 0.112	> 5 minutes	0.231 ± 0.021 0.095 ± 0.009	$0.562 {\pm} 0.037 \ 0.454 {\pm} 0.074$
Putting away dishes		0.811 ± 0.031 0.141 ± 0.111	0.828 ± 0.052 0.547 ± 0.296	> 5 minutes	$0.883 {\pm} 0.043 \ 0.830 {\pm} 0.013$	0.813 ± 0.022 0.739 ± 0.072
Sorting books			0.543 ± 0.053 0.220 ± 0.010	> 5 minutes	0.618 ± 0.012 0.338 ± 0.078	$0.631 {\pm} 0.055 \ 0.412 {\pm} 0.038$
Throwing away leftovers			0.890 ± 0.029 0.653 ± 0.039	> 5 minutes	0.924 ± 0.014 0.713 ± 0.069	0.888 ± 0.039 0.729 ± 0.031
Washing pots and pans			0.227 ± 0.079 0.028 ± 0.016	> 5 minutes	$0.349 {\pm} 0.063 \ 0.242 {\pm} 0.110$	0.184 ± 0.024 0.153 ± 0.024
Watering houseplants			0.806 ± 0.020 0.187 ± 0.113	> 5 minutes	0.843±0.010 0.545±0.151	0.835 ± 0.022 0.734 ± 0.063
Averaged time per evalua	ation	1.48 seconds	2.09 seconds	> 5 minutes	2.88 seconds	2.98 seconds

ABIL demonstrates great performance under the open enviornments.

Results on CLIPort

Task	ВС	DT	ABIL-BC	ABIL-DT
Packing-5shapes	0.580±0.252	0.607±0.223	0.983±0.015	0.903±0.085
Packing-20shapes	0.207±0.006	0.180±0.026	0.940±0.030	0.857±0.025
Put-4blocks-in-5bowl	0.365±0.141	0.319±0.068	0.962±0.012	0.917±0.033

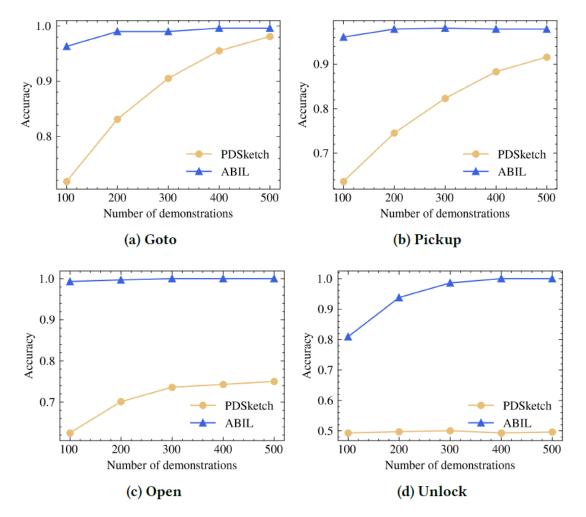


Packing-shapes

Put-blocks-in-bowls

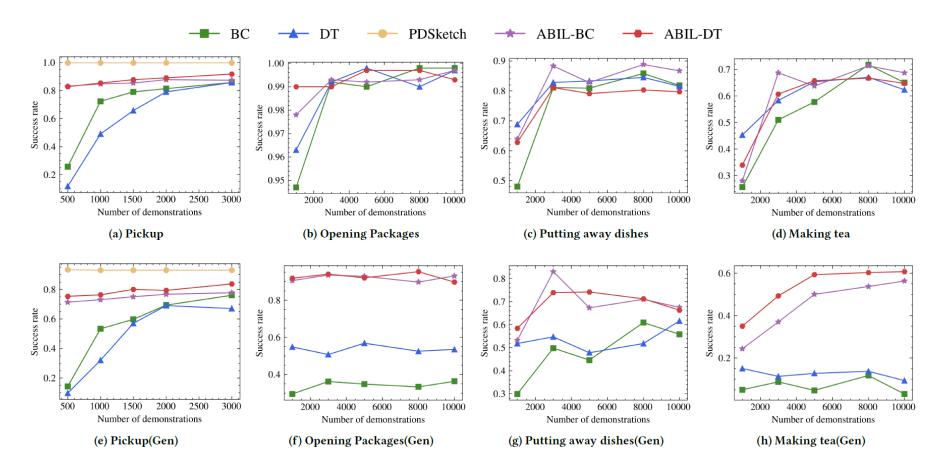
ABIL gives outstanding results in CLIPort Environment.

Comparison of Neural-Symbolic Grounding



ABIL outperforms in understanding the environment accurately.

Data Efficiency and Generalization



ABIL improves the **data efficiency** of the BC and DT baselines, achieves significant **generalization improvement** in the out-of-distribution evaluation

Compositional Generalization

Domain	BabyAI					
Task	Tra Pickup	Eval Unlock				
BC DT PDSketch ABIL-BC ABIL-DT	0.760±0.056 0.783±0.031 0.970±0.010 0.937±0.021 0.925±0.007	0.983±0.021 0.957±0.031 0.990±0.010 1.00	0.120±0.010 0.057±0.051 0.127±0.021 0.980±0.026 0.993±0.012			

Domain	Mini-BEHAVIOR						
	Train	Eval		Train	Eval		
Task	Open 1	Open 2	Open 3	Throw 1	Throw 2	Throw 3	
ВС	0.950±0.087	0.012±0.010	0.002±0.004	0.703±0.085	0.117±0.070	0.053±0.045	
DT	1.00	0.037 ± 0.025	0.024 ± 0.008	0.770 ± 0.026	0.182 ± 0.008	0.056 ± 0.003	
PDSketch	0.467 ± 0.057	0.020 ± 0.010	> 5 minutes	0.013±0.006	> 5 minutes	> 5 minutes	
ABIL-BC	0.997±0.006	0.818 ± 0.014	0.551 ± 0.032	0.763±0.049	0.638 ± 0.052	0.536 ± 0.082	
ABIL-DT	1.00	0.840±0.035	0.631 ± 0.041	0.803±0.051	0.650±0.049	$0.585 {\pm} 0.120$	

ABIL has the ability to **zero-shot generalize** to novel composed tasks.

Outline

- 1. Background & Problem
- 2. ABIL Framework

- 3. Empirical Results
- 4. Conclusion

Conclusion

- ➤ In this paper, we propose a novel framework: ABIL
- ✓ A novel framework which combines the benefits of data-driven learning and symbolic-based reasoning.
- ✓ Extensive experiments demonstrate the effectiveness and generality of ABIL.

Future work

➤ Learning with accurate and incomplete knowledge base

Thank you!

If you are interested in, feel free to contact us:

Hao-Ran Hao (hhr277133291@gmail.com)
Jie-Jing Shao (shaojj@lamda.nju.edu.cn)