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What is this work about LANbA
Learning And Mining from DatA \& T

» Long-Horizon Decision-Making is critical for embodied intelligence.

<V RNV

Imitation Learning
Shows promising performance on robotics and auto-driving.
Is limited in open environments, especially in the long-horizon tasks.

Traditional symbolic planning
Excels at long-horizon tasks via logical reasoning.
Typically abstracts away perception with ground-truth symbols,

struggles to map visual observations to human-defined symbolic spaces.
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Such limitations restrict their application in Open environments.
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What is this work about

Data Efficiency - Zero-Shot Transfer
m \. [Sub Task] [Sub Task]

Generalization
(e ] - L _ Composed task_ |
settm s
v" In this work, we propose a novel framework Abductive Imitation Learning

(ABIL) to combine the benefits of data-driven learning and symbolic-based
reasoning.

Learning And Mining from DatA X

v Our ABIL shows significantly improved performance on settings of data-
efficiency and generalization in the open environments.
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Long-Horizon Planning

Background

0 Previous Studies:

Learning And Mining from DatA X

» Imitation learning: is weak at long-horizon tasks

» Symbolic Planning: requires symbolic-level grounding

» Recent efforts on neuro-symbolic solutions[1,2,3]:
These methods typically assume there are sufficient symbolic
information, or only applicable to low-dimensional robotics states.

» Help the agent understand demonstrations in symbolic space from
high-dimensional visual observations without symbolic-level label.

» Enable long-term logical planning for imitation learning.

[1] Regression Planning Networks. NeurIPS’19
[2] Learning Symbolic Operators for Task and Motion Planning. IROS’21
[3] Programmatically grounded, compositionally generalizable robotic manipulation. I[CLR’23
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Main Idea of ABIL

Learning And Mining from DatA

The Overall Framework

Observation s,

Observation s;

Symbolic-Grounded Imitation
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Symbolic Grounding

Goal:
» Help the agent understand demonstrations in symbolic space from high-
dimensional visual observations without symbolic-level label.

» Enable long-term logical planning for imitation learning.
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Problem Formulation

Learning And Mining from DatA e >

Goal-based planning task.
» Environment Definition: (S, A, 7,0, P,0P,S 0 g)

Deterministic, fully-observed environment with object-centric representation.

» Symbolic Knowledge Base:
A finite-state machine, with a directed graph G = (V, E)

O Each node v € V contains a set of ground atoms, which can be viewed as the
condition of a sub-task.

O Each edge is noted as a tuple ( op, EFF*,EFF~ ).

Pick(cloth) m Place(cloth, machine)
5 @ 5
HandFree(robot) Holding(cloth) HandFree(robot)
OuTop(cloth.floor) IsOpen(machine) In(cloth,machine)
IsOpen(machine)

An example of the knowledge base
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Symbolic-grounded Understanding LANbA
Learning And Mining from DatA \& ux>

Observation s,

Ground-truth
Symbolic Labels

=0
=0
=0

Perception

OnTop (cloth, floor) e I
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IsOpen (machine) @ Perceived labels

A straightforward method: optimize the network with the symbolic labels.

However: Symbolic supervision is typically costly or not available
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Symbolic-grounded Understanding

Observation s;
‘ Abductive Reasoning

Abduced labels

Learning = 0 Abduction
=
Perception —— | 5] A — Knowledge
=0 Base

OnTop (cloth, floor) e T
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=0

IsOpen (machine) @ Perceived labels

A straightforward method: optimize the network with the symbolic labels.
However: Symbolic supervision is typically costly or not available

We introduce the abductive reasoning to optimize the network.
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Abductive Reasoning

Learning And Mining from DatA e >

» Acquire the pseudo label from the knowledge of state machine via
abductive reasoning.

only v, v, then v, V1 OF Uy v, and v,
O T ® O—@
()
© (r——(v)
(a) (b) (c) (d)

Typical structures of the state machine

. : . T
® Derive the sequential abduction: {th }tzl EG

® Optimize the perception function f

T
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Symbolic-grounded Imitation

Learning And Mining from DatA X

Observation S,

Symbolic-Grounded Imitation
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Symbolic Grounding
® Build the behavioral actor for each logical operator h,y,, €.8. hyick, Apiace

® Derive the symbolic states by perception f, and derive the corresponding
abstract logical operator

op' =opp.s.t.f(s)) | og, Ik € [0,K)
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Symbolic-grounded Imitation

Learning And Mining from DatA X

Ob t1
el Symbolic-Grounded Imitation
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Symbolic Grounding
® Obtain the desired parameter of the operator 0p® by reasoning
o° = obj(op")
® Then optimize the behavior actors
T
mhin Z Z L(h@lg(sf, o'), af)

spa;eD t=1
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ABIL Algorithm LANbA
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Algorithm 1 Abductive Imitation Learning

Require: Demonstration dataset D, symbolic knowledge G. Num-
ber of learning rounds Ng and Nj.
1: fort =1to Ng do
Get the perceived labels via f(s)
Get the abduced labels via Eq. 1.
Update the perception network f.
end for
fort =1to Ny do
Get the symbolic states via f(s)
Get the logical operator op via Eq. 2.
Update the behavior network hgp via Eq. 4.
end for
11: return Perception f and behavior {hep},0p € OP.

A AR L R i 1

—
.

» A two-stage learning algorithm.

» Embed high-level logical reasoning into the imitation learning process.
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_ Learning And Mining from DatA &t/

Three diverse environments Baseline Methods

> BabyAl , . o . » Behavior Cloning (BC)
v’ Learning with logical instruction

» Mini-BEHAVIOR » Decision Transformer (DT)
v’ Household Agent > PDSketch

» CLIPort
v" Robotic manipulation

-

K BabyAl Mini-BEHAVIOR CLIPort /
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Evaluation on BabyAl

Learning And Mining from DatA

Task Eval BC DT PDSketch ABIL-BC ABIL-DT
GotoSingle Basic 1.00 0.893+0.049 1.00 1.00 0.900+0.036
Goto Basic 0.843+0.006 0.720+0.044 1.00 0.900+£0.046 0.853+0.038
Gen 0.743+0.045 0.583+0.049 1.00 0.777+0.032 0.793+0.029
Picku Basic 0.723+0.031 0.490+0.040 0.990+0.010 0.847+0.025 0.845+0.035
P Gen 0.533+0.031 0.320+0.070 0.973+0.012 0.730+0.010 0.763+0.051
Open Basic 0.933+0.025 0.493+0.059 1.00 0.963+0.021 0.903+0.064
p Gen 0.877+0.015 0.440+0.078 1.00 0.927+0.032 0.813+0.064
Put Basic 0.950+0.044 0.910£0.036 0.650+0.026 0.930+£0.010 0.920+0.026
Gen 0.037+0.012 0.207+0.092 0.560+0.052 0.917+0.015 0.877+£0.025
Unlock Basic 0.957+0.012 0.885+0.035 0.293+0.051 0.967+0.023 0.993+0.012
Gen 0.910+0.030 0.883+0.075 0.247+0.051 0.963+0.006 0.993+0.012

Averaged time per evaluation

0.174 seconds

0.260 seconds

8.17 seconds

0.320 seconds

0.354 seconds

ABIL effectively improves the performance of imitation learning methods.

2024/6/29
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Results on Mini-BEHAVIOR

Learning And Mining from DatA

Task Eval ‘ BC DT PDSketch ABIL-BC ABIL-DT

Boxing books b Basic|0.707£0.041 0.713+0.035 . minutes 0.709£0.077  0.661+£0.094
ne I Gen |0.33540.177 0.519+0.191 ~ ° 0.644+0.172 0.62540.087
Cleaning A Car Basic|0.417+0.047 0.313+0.091 _ minutes 0.423+0.032 0.330£0.050
o & ' Gen |0.170£0.036 0.147+0.083 ~ ° 0.253+0.047 0.170£0.078
Cleaning shoes Basic|0.4824+0.086 0.427+0.042 _ _ minutes 0.598+0.068 0.478+0.020
- & Gen |0.030£0.005 0.053+0.046 ~ ° 0.390+£0.102 0.290+0.026
. . Basic|0.460+0.030 0.299+0.015 . 0.6174+0.061 0.457+0.007

Collect misplaced items > 5 minutes

Gen [0.3254+0.074 0.261+0.023 0.423+0.051 0.387+0.028

Basic|0.9034+0.023 0.927+0.021 0.343+0.032 0.887+0.021 0.937+0.023
Gen [0.003+0.006 0.300+0.147 0.310+0.046 0.727+0.047 0.757+0.107

=]

Installing a printer

Laving wood floors Basic|0.616-£0.062 0.638£0.027 _ 5 minutes 0.644+0.043 0.64340.031
yine Gen |0.0684:0.018 0.366+0.041 ~ ° 0.628+0.057 0.37440.040
Makine toa Basic|0.607£0.015 0.583+£0.105 5 minutes 0.68710.038 0.607x0.029
& e Gen |0.0704:0.078 0.11340.105 ~ ° 0.370=0.131 0.493+0.124
Movine boxes to storage Basic|0.753+£0.083 0.780£0.017 _ 5 minutes 0.767X0.012 0.787+0.032
& €% Gen [0.417£0.110 0.617+£0.042 0.730+0.017 0.673£0.119

Basic|0.94740.045 0.963+0.034 0.020+0.010 0.978+0.010 0.990+0.009

Opening packages Gen |0.29540.180 0.548+0.065 0.02040.010 0.905+0.018 0.918+0.033

Basic|0.1564+0.047 0.5224+0.067 0.231+0.021 0.562+0.037

Organizing file cabinet o o eat 0012 0382100112 — 0 ™SS 05 10,009 0.45440.074
0.883+0.043 0.81340.022

0.830+£0.013 0.739+0.072

Puttine away dish Basic|0.811+0.031 0.828+0.052 _ _ .
uthing away dishes Gen |0.14140.111 0.547+£0.206 ~ ° THOHes

Basic|0.601£0.032 0.543£0.053 H 0.618+0.012 0.631+0.055

Sorting books Gen |0.13140.047 0.22040.010 ~ ° "HHUEES () 990 10.078 0.412+0.038

Throwine awar loftovers B2SiC[0-83320.080 0.800+0.020
TOWINE away IeHOovers - on 10.22240.167 0.653-£0.039 ~ ° THIULES

0.924+0.014 0.88840.039
0.7134+0.069 0.729+0.031

Washi e and Basic(0.34240.022 0.227+0.070
asiing pots and pans oo 10.099+0.168 0.0284+0.016 ~ > TS

0.349+0.063 0.184=+0.024
0.242+0.110 0.153+0.024

Basic|0.814£0.034 0.806£0.020 . 0.8431+0.010 0.835x0.022

Watering houseplants . 10 6001 0,004 018740113 ~ ° ™IS St 0.151 0.73440.063

Averaged time per evaluation ‘1.48 seconds 2.09 seconds > 5 minutes 2.88 seconds 2.98 scconds

ABIL demonstrates great performance under the open enviornments.
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Results on CLIPort

Learning And Mining from DatA

Task ‘ BC DT ABIL-BC ABIL-DT

Packing-5shapes ‘ 0.580+0.252 0.607+0.223 0.983+0.015 0.903+0.085
Packing-20shapes ‘ 0.207+0.006 0.180%0.026 0.940+0.030 0.857+0.025
Put-4blocks-in-5bowl ‘ 0.365+0.141 0.319£0.068 0.962+0.012 0.917£0.033

Packing-shapes Put-blocks-in-bowls

ABIL gives outstanding results in CLIPort Environment.
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Comparison of Neural-Symbolic Grounding

Accuracy

Accuracy
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Learning And Mining from DatA

ABIL outperforms in understanding the environment accurately.
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Data Efficiency and Generalization

Learning And Mining from DatA
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ABIL improves the data efficiency of the BC and DT baselines, achieves
significant generalization improvement in the out-of-distribution evaluation
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Learning And Mining from DatA

Compositional Generalization

Domain BabyAl
Train Eval

Task Pickup Open Unlock

BC 0.760£0.056 0.983+0.021 0.120+0.010

DT 0.783+0.031 0.957+0.031 0.057+0.051

PDSketch | 0.970+0.010 0.990+0.010 0.127+0.021

ABIL-BC 0.937+0.021 1.00 0.980+0.026

ABIL-DT 0.925+0.007 1.00 0.993+0.012
Domain Mini-BEHAVIOR

Train Eval Train Eval

Task Open 1 Open 2 Open 3 Throw 1 Throw 2 Throw 3
BC 0.950+0.087 0.012+0.010 0.002+0.004 0.703+0.085 0.117+0.070 0.053+0.045
DT 1.00 0.037+0.025 0.024+0.008 0.770+0.026 0.182+0.008 0.056+0.003
PDSketch | 0.467+0.057 0.020+0.010 = 5 minutes 0.013+0.006 = 5 minutes = 5 minutes
ABIL-BC 0.997+0.006 0.818+0.014 0.551+0.032 0.763+0.049 0.638+0.052 0.536+0.082
ABIL-DT 1.00 0.840+0.035 0.631+0.041 | 0.803+0.051 | 0.650+0.049 0.585x+0.120

ABIL has the ability to zero-shot generalize to novel composed tasks.
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1. Background & Problem

2. ABIL Framework

3. Empirical Results

4. Conclusion
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Conclusion LANbA
Learning And Mining from DatA \& 55X

» In this paper, we propose a novel framework: ABIL

v" A novel framework which combines the benefits of data-driven learning
and symbolic-based reasoning.

v" Extensive experiments demonstrate the effectiveness and generality of ABIL.

Future work

» Learning with accurate and incomplete knowledge base

Thank you!

If you are interested in, feel free to contact us:

Hao-Ran Hao (hhr277133291@gmail.com)
Jie-Jing Shao (shaojj@lamda.nju.edu.cn)
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