Abductive Learning for Neuro-Symbolic Grounded Imitation Jie – Jing Shao^{1*}, **Hao** – **Ran Hao**^{1,2*}, Xiao – Wen Yang^{1,2}, De – Chuan Zhan^{1,2} National Key Laboratory for Novel Software Technology, Nanjing University, China School of Artificial Intelligence, Nanjing University, China #### What is this work about - ➤ Long-Horizon Decision-Making is critical for embodied intelligence. - > Imitation Learning - ✓ Shows promising performance on robotics and auto-driving. - Is limited in open environments, especially in the long-horizon tasks. - > Traditional symbolic planning - ✓ Excels at long-horizon tasks via logical reasoning. - Typically abstracts away perception with ground-truth symbols, struggles to map visual observations to human-defined symbolic spaces. Such limitations restrict their application in Open environments. #### What is this work about - ✓ In this work, we propose a novel framework Abductive Imitation Learning (ABIL) to combine the benefits of data-driven learning and symbolic-based reasoning. - ✓ Our **ABIL** shows significantly improved performance on settings of dataefficiency and generalization in the open environments. ## Outline # 1. Background 2. ABIL Framework 3. Empirical Results 4. Conclusion ## Long-Horizon Planning #### **Background** - ☐ Previous Studies: - ➤ Imitation learning: is weak at long-horizon tasks - > Symbolic Planning: requires symbolic-level grounding - ➤ Recent efforts on neuro-symbolic solutions[1,2,3]: These methods typically assume there are sufficient symbolic information, or only applicable to low-dimensional robotics states. #### **Our Goal** - ➤ Help the agent understand demonstrations in symbolic space from high-dimensional visual observations without symbolic-level label. - ➤ Enable long-term logical planning for imitation learning. - [1] Regression Planning Networks. NeurIPS'19 - [2] Learning Symbolic Operators for Task and Motion Planning. IROS'21 - [3] Programmatically grounded, compositionally generalizable robotic manipulation. ICLR'23 #### Main Idea of ABIL #### The Overall Framework #### Goal: - ➤ Help the agent understand demonstrations in symbolic space from high-dimensional visual observations without symbolic-level label. - Enable long-term logical planning for imitation learning. ## Outline 1. Background & Problem 2. ABIL Framework 3. Empirical Results 4. Conclusion #### Problem Formulation Goal-based planning task. - Environment Definition: $\langle S, \mathcal{A}, \mathcal{T}, O, \mathcal{P}, O\mathcal{P}, S^0, g \rangle$ Deterministic, fully-observed environment with object-centric representation. - > Symbolic Knowledge Base: A finite-state machine, with a directed graph $G = \langle V, E \rangle$ - \blacksquare Each node $v \in V$ contains a set of ground atoms, which can be viewed as the condition of a sub-task. - \square Each edge is noted as a tuple $\langle \overline{op}, EFF^+, EFF^- \rangle$. An example of the knowledge base ## Symbolic-grounded Understanding A straightforward method: optimize the network with the symbolic labels. However: Symbolic supervision is typically costly or not available ## Symbolic-grounded Understanding A straightforward method: optimize the network with the symbolic labels. However: Symbolic supervision is typically costly or not available We introduce the abductive reasoning to optimize the network. ## Abductive Reasoning Acquire the pseudo label from the knowledge of state machine via abductive reasoning. Typical structures of the state machine - Derive the sequential abduction: $\{z_i^t\}_{t=1}^T \models G$ - Optimize the perception function f $$\min_{f} \sum_{s_{i} \in D} \sum_{t=1}^{T} \mathcal{L}(f(s_{i}^{t}), \widehat{z_{i}^{t}}),$$ $$\{\widehat{z_{i}^{t}}\}_{t=1}^{T} = \arg\min_{\{z_{i}^{t}\}_{t=1}^{T}} \sum ||z_{i}^{t} - f(s_{i}^{t})||^{2}, \quad \text{s.t.} \{z_{i}^{t}\}_{t=1}^{T} \models G$$ ## Symbolic-grounded Imitation - Build the behavioral actor for each logical operator h_{op} , e.g. h_{pick} , h_{place} - ullet Derive the symbolic states by perception f, and derive the corresponding abstract logical operator $$\overline{op}^t = \overline{op}_k$$, s.t. $f(s^t) \models v_k$, $\exists k \in [0, K)$ ## Symbolic-grounded Imitation - Obtain the desired parameter of the operator \overline{op}^t by reasoning $o^t = obj(\overline{op}^t)$ - Then optimize the behavior actors $$\min_{h} \sum_{s_i, a_i \in D} \sum_{t=1}^{T} \mathcal{L}(h_{\overline{op}_i^t}(s_i^t, o^t), a_i^t)$$ ## ABIL Algorithm #### Algorithm 1 Abductive Imitation Learning **Require:** Demonstration dataset D, symbolic knowledge G. Number of learning rounds N_R and N_I . - 1: **for** t = 1 to N_R **do** - 2: Get the perceived labels via f(s) - 3: Get the abduced labels via Eq. 1. - 4: Update the perception network f. - 5: end for - 6: **for** t = 1 to N_I **do** - 7: Get the symbolic states via f(s) - 8: Get the logical operator $o\bar{p}$ via Eq. 2. - 9: Update the behavior network $h_{\bar{o}p}$ via Eq. 4. - 10: end for - 11: **return** Perception f and behavior $\{h_{\bar{op}}\}, \bar{op} \in \mathcal{OP}$. - ➤ A two-stage learning algorithm. - > Embed high-level logical reasoning into the imitation learning process. ## Outline - 1. Background & Problem - 2. ABIL Framework - 3. Empirical Results - 4. Conclusion ## Setup #### Three diverse environments - ➤ BabyAI - ✓ Learning with logical instruction - Mini-BEHAVIOR - ✓ Household Agent - > CLIPort - ✓ Robotic manipulation #### **Baseline Methods** - Behavior Cloning (BC) - Decision Transformer (DT) - > PDSketch BabyAI Mini-BEHAVIOR **CLIPort** ## Evaluation on BabyAI | Task | Eval | ВС | DT | PDSketch | ABIL-BC | ABIL-DT | |------------------------------|--------------|----------------------------|----------------------------|----------------------------|---|----------------------------| | GotoSingle | Basic | 1.00 | 0.893±0.049 | 1.00 | 1.00 | 0.900±0.036 | | Goto | Basic
Gen | 0.843±0.006
0.743±0.045 | 0.720±0.044
0.583±0.049 | 1.00
1.00 | $\frac{0.900 \pm 0.046}{0.777 \pm 0.032}$ | 0.853±0.038
0.793±0.029 | | Pickup | Basic
Gen | 0.723±0.031
0.533±0.031 | 0.490±0.040
0.320±0.070 | 0.990±0.010
0.973±0.012 | 0.847±0.025
0.730±0.010 | 0.845±0.035
0.763±0.051 | | Open | Basic
Gen | 0.933±0.025
0.877±0.015 | 0.493±0.059
0.440±0.078 | 1.00
1.00 | $\frac{0.963 \pm 0.021}{0.927 \pm 0.032}$ | 0.903±0.064
0.813±0.064 | | Put | Basic
Gen | 0.950±0.044
0.037±0.012 | 0.910±0.036
0.207±0.092 | 0.650±0.026
0.560±0.052 | 0.930±0.010
0.917±0.015 | 0.920±0.026
0.877±0.025 | | Unlock | Basic
Gen | 0.957±0.012
0.910±0.030 | 0.885±0.035
0.883±0.075 | 0.293±0.051
0.247±0.051 | 0.967±0.023
0.963±0.006 | 0.993±0.012
0.993±0.012 | | Averaged time per evaluation | | 0.174 seconds | 0.260 seconds | 8.17 seconds | 0.320 seconds | 0.354 seconds | **ABIL** effectively improves the performance of imitation learning methods. ## Results on Mini-BEHAVIOR | Task | Eval | BC | DT | PDSketch | ABIL-BC | ABIL-DT | |--------------------------|-------|--|--|----------------------------------|---|---| | Boxing books up | | | 0.713 ± 0.035
0.519 ± 0.191 | > 5 minutes | 0.709 ± 0.077
0.644 ± 0.172 | 0.661 ± 0.094
0.625 ± 0.087 | | Cleaning A Car | | | 0.313 ± 0.091
0.147 ± 0.083 | > 5 minutes | $\substack{0.423 \pm 0.032 \\ 0.253 \pm 0.047}$ | $0.330\pm0.050 \\ 0.170\pm0.078$ | | Cleaning shoes | | | 0.427 ± 0.042
0.053 ± 0.046 | > 5 minutes | $\substack{0.598 \pm 0.068 \\ 0.390 \pm 0.102}$ | 0.478 ± 0.020
0.290 ± 0.026 | | Collect misplaced items | | | 0.299 ± 0.015
0.261 ± 0.023 | > 5 minutes | $0.617 {\pm} 0.061 \ 0.423 {\pm} 0.051$ | 0.457 ± 0.007
0.387 ± 0.028 | | Installing a printer | | | 0.927±0.021
0.300±0.147 | 0.343±0.032
0.310±0.046 | 0.887 ± 0.021
0.727 ± 0.047 | $0.937 {\pm} 0.023 \ 0.757 {\pm} 0.107$ | | Laying wood floors | | | 0.638 ± 0.027
0.366 ± 0.041 | > 5 minutes | $0.644{\pm}0.043 \ 0.628{\pm}0.057$ | 0.643 ± 0.031
0.374 ± 0.040 | | Making tea | | | 0.583 ± 0.105
0.113 ± 0.105 | > 5 minutes | 0.687±0.038
0.370±0.131 | 0.607 ± 0.029
0.493 ± 0.124 | | Moving boxes to storage | | | 0.780 ± 0.017
0.617 ± 0.042 | > 5 minutes | 0.767 ± 0.012
0.730 ± 0.017 | 0.787±0.032
0.673±0.119 | | Opening packages | | | 0.963 ± 0.034
0.548 ± 0.065 | $0.020\pm0.010 \\ 0.020\pm0.010$ | 0.978±0.010
0.905±0.018 | $0.990\pm0.009 \ 0.918\pm0.033$ | | Organizing file cabinet | | | 0.522 ± 0.067
0.382 ± 0.112 | > 5 minutes | 0.231 ± 0.021
0.095 ± 0.009 | $0.562 {\pm} 0.037 \ 0.454 {\pm} 0.074$ | | Putting away dishes | | 0.811 ± 0.031
0.141 ± 0.111 | 0.828 ± 0.052
0.547 ± 0.296 | > 5 minutes | $0.883 {\pm} 0.043 \ 0.830 {\pm} 0.013$ | 0.813 ± 0.022
0.739 ± 0.072 | | Sorting books | | | 0.543 ± 0.053
0.220 ± 0.010 | > 5 minutes | 0.618 ± 0.012
0.338 ± 0.078 | $0.631 {\pm} 0.055 \ 0.412 {\pm} 0.038$ | | Throwing away leftovers | | | 0.890 ± 0.029
0.653 ± 0.039 | > 5 minutes | 0.924 ± 0.014
0.713 ± 0.069 | 0.888 ± 0.039
0.729 ± 0.031 | | Washing pots and pans | | | 0.227 ± 0.079
0.028 ± 0.016 | > 5 minutes | $0.349 {\pm} 0.063 \ 0.242 {\pm} 0.110$ | 0.184 ± 0.024
0.153 ± 0.024 | | Watering houseplants | | | 0.806 ± 0.020
0.187 ± 0.113 | > 5 minutes | 0.843±0.010
0.545±0.151 | 0.835 ± 0.022
0.734 ± 0.063 | | Averaged time per evalua | ation | 1.48 seconds | 2.09 seconds | > 5 minutes | 2.88 seconds | 2.98 seconds | **ABIL** demonstrates great performance under the open enviornments. ## Results on CLIPort | Task | ВС | DT | ABIL-BC | ABIL-DT | |----------------------|-------------|-------------|-------------|-------------| | Packing-5shapes | 0.580±0.252 | 0.607±0.223 | 0.983±0.015 | 0.903±0.085 | | Packing-20shapes | 0.207±0.006 | 0.180±0.026 | 0.940±0.030 | 0.857±0.025 | | Put-4blocks-in-5bowl | 0.365±0.141 | 0.319±0.068 | 0.962±0.012 | 0.917±0.033 | Packing-shapes Put-blocks-in-bowls **ABIL** gives outstanding results in CLIPort Environment. # Comparison of Neural-Symbolic Grounding ABIL outperforms in understanding the environment accurately. ## Data Efficiency and Generalization **ABIL** improves the **data efficiency** of the BC and DT baselines, achieves significant **generalization improvement** in the out-of-distribution evaluation # Compositional Generalization | Domain | BabyAI | | | | | | |--|--|---|--|--|--|--| | Task | Tra
Pickup | Eval
Unlock | | | | | | BC
DT
PDSketch
ABIL-BC
ABIL-DT | 0.760±0.056
0.783±0.031
0.970±0.010
0.937±0.021
0.925±0.007 | 0.983±0.021
0.957±0.031
0.990±0.010
1.00 | 0.120±0.010
0.057±0.051
0.127±0.021
0.980±0.026
0.993±0.012 | | | | | Domain | Mini-BEHAVIOR | | | | | | | |----------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|--| | | Train | Eval | | Train | Eval | | | | Task | Open 1 | Open 2 | Open 3 | Throw 1 | Throw 2 | Throw 3 | | | ВС | 0.950±0.087 | 0.012±0.010 | 0.002±0.004 | 0.703±0.085 | 0.117±0.070 | 0.053±0.045 | | | DT | 1.00 | 0.037 ± 0.025 | 0.024 ± 0.008 | 0.770 ± 0.026 | 0.182 ± 0.008 | 0.056 ± 0.003 | | | PDSketch | 0.467 ± 0.057 | 0.020 ± 0.010 | > 5 minutes | 0.013±0.006 | > 5 minutes | > 5 minutes | | | ABIL-BC | 0.997±0.006 | 0.818 ± 0.014 | 0.551 ± 0.032 | 0.763±0.049 | 0.638 ± 0.052 | 0.536 ± 0.082 | | | ABIL-DT | 1.00 | 0.840±0.035 | 0.631 ± 0.041 | 0.803±0.051 | 0.650±0.049 | $0.585 {\pm} 0.120$ | | **ABIL** has the ability to **zero-shot generalize** to novel composed tasks. ## Outline - 1. Background & Problem - 2. ABIL Framework - 3. Empirical Results - 4. Conclusion #### Conclusion - ➤ In this paper, we propose a novel framework: ABIL - ✓ A novel framework which combines the benefits of data-driven learning and symbolic-based reasoning. - ✓ Extensive experiments demonstrate the effectiveness and generality of ABIL. #### Future work ➤ Learning with accurate and incomplete knowledge base # Thank you! If you are interested in, feel free to contact us: Hao-Ran Hao (hhr277133291@gmail.com) Jie-Jing Shao (shaojj@lamda.nju.edu.cn)